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It is commonly assumed that cities are detrimental to mental
health. However, the evidence remains inconsistent and at most,
makes the case for differences between rural and urban envi-
ronments as a whole. Here, we propose a model of depression
driven by an individual’s accumulated experience mediated by
social networks. The connection between observed systematic
variations in socioeconomic networks and built environments
with city size provides a link between urbanization and mental
health. Surprisingly, this model predicts lower depression rates
in larger cities. We confirm this prediction for US cities using
four independent datasets. These results are consistent with other
behaviors associated with denser socioeconomic networks and
suggest that larger cities provide a buffer against depression.
This approach introduces a systematic framework for conceptual-
izing and modeling mental health in complex physical and social
networks, producing testable predictions for environmental and
social determinants of mental health also applicable to other
psychopathologies.

cities | depression | social networks | built environment | complex systems

L iving in cities changes the way we behave and think (1–3).
Over a century ago, the social changes associated with mas-

sive urbanization in Europe and in the United States focused
social scientists on the nexus between cities and mental life (2).
Along with the urban public health crises of the time, a cen-
tral question became whether cities are good or bad for mental
health.

Subsequently, social psychologists (1) started to document and
measure the systematic behavioral adaptations among people liv-
ing in cities. These adaptations included a more intense use of
time [e.g., faster walking (4)], a greater tolerance for diversity (5),
and strategies to curb unwanted social interactions—such that
people in larger cities act in colder and more callous ways (1).
These studies attributed the influences of urban environments on
mental health to the intensity of social life in larger cities, medi-
ated by densely built spaces and associated dynamic and diverse
socioeconomic interaction networks. They did not, however, ulti-
mately clarify whether urban environments promote better or
worse mental health. Consequently, concerns persisted that cities
are mentally taxing (6–9) and can induce “stimulus overload,”
including stress, mental fatigue (10), and low levels of subjective
well-being (SWB) (11).

More recent studies have focused less on urban environments
as a whole and more on contextual and environmental fac-
tors associated with depression. For example, a study of the
entire population in Sweden (9) uncovered a positive associa-
tion between neighborhood population density and depression-
related hospitalizations. In addition, individual factors of gender,
age, socioeconomic status, and race, which vary at neighbor-
hood levels within cities, have been found to be statistically
associated with depression (12–14). Other studies using various
measures of mental health and broader definitions of urban envi-
ronments have found evidence for an association between poorer

mental health in cities vs. rural areas (7, 8). However, this evi-
dence and that linking SWB and cities (15–18) have remained
mixed and often explicitly inconsistent (19, 20) due to differ-
ences in 1) reporting (e.g., surveys vs. medical records); 2) types
of measurement (e.g., surveys vs. interviews); 3) definitions of
what constitutes urban; and 4) the mental disorders studied (e.g.,
schizophrenia vs. depression).

For these reasons, it is desirable to create a systematic frame-
work that organizes this diverse body of research and inter-
rogates how varying levels of urbanization influence mental
health across different sets of indicators. Here, we begin to
build this framework for depression in US cities. We show that,
surprisingly, the per capita prevalence of depression decreases
systematically with city size.

Like earlier classic approaches, our strategy frames the effects
of city size on mental health through the lens of the individual
experience of urban physical and socioeconomic environments.
Crucial to our purposes, many characteristics of cities have been
recently found to vary predictably with city population size.
These systematic variations in urban indicators are explained
by denser built environments and their associated increases
in the intensity of human interactions and resulting adaptive
behaviors (21).

More specifically, people in larger cities have, on average,
more socioeconomic connections mediating a greater variety of
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functions. This effect is understood theoretically by the statis-
tical likelihood to interact with more people over space per
unit time, leading to potential mental “overload” but also, to
greater stimulation and choice along more dimensions of life.
This expansion of socioeconomic networks is supported struc-
turally by economies of scale (e.g., road length) in urban built
environments and by occupational specialization and associated
increases in economic productivity and exchange (3).

This effect leads to a number of quantitative predictions about
the nature of urban spaces and socioeconomic variables, the
most central of which is the variation of the average number
of socioeconomic interactions, k (network degree), with city
size, N , as k(N )= k0N

δeξ. Here, k0 is a prefactor indepen-
dent of city size, and ξ is a residual measuring the distance
from the population average. The exponent 0<δ' 1/6< 1
measures the percentage increase in the number of connec-
tions with each percentage increase in city population, which
is an elasticity in the language of economics. Because the
ξ reflects city size–independent statistical fluctuations, these
errors average out across cities, and k obeys a scaling rela-
tionship on average over cities, such that k(N )∼N δ . This
expectation that k follows a scaling law with city population
is directly observed in cell phone networks (22) and indirectly
via the faster spread of infectious diseases such as COVID-19
(23), and by higher per capita economic productivity and rates
of innovation (4, 21).

This result is important to mental health because depression is
associated, at the individual level, with fewer social contacts (24,
25). To translate the general scaling of social interactions with
city size into a model for the incidence of depression in urban
areas, we will now need to pay particular attention not only to the
average number of social connections in a city of size N , k(N ),
but also, to its variance across individuals in that city and how
they influence depression.

Results
We developed a statistical mathematical model that brings
together socioeconomic network structure with individual risk
of depression (Fig. 1). This model takes the form of a genera-
tive social network, which combines 1) a degree distribution with
mean scaling as k(N )= k0N

δ (Fig. 1B) with 2) the risk (probabil-

ity) for an individual to manifest depression, pd(k), taken to be
inversely proportional to their social connectivity, pd(k)∼ 1/k
(Fig. 1C). We will return to the finer issue of quality and type
of connections below. For now, note that a larger number of
connections in larger cities entails a qualitatively different expe-
rience because it is driven by the need to obtain support, goods,
and services in environments with deep divisions of knowledge
and labor.

To complete the model, we need to specify the probability
distribution of degree, f (k), in each city. We adopt a log skew-
normal distribution with parameters similar to those measured
in ref. 22 (Fig. 1B). This choice introduces another assump-
tion into our model because lognormal distributions arise from
multiplicative random processes, which compound risk over
time to generate outcomes. In this sense, the adoption of this
distribution assumes that depression is the result of a cumu-
lative exposure process over time (26) (Fig. 1A) mediated by
an individual’s social network. Fig. 1D shows results from this
model obtained by sampling each city’s degree distribution N
times, corresponding to a city’s population. Each simulated
city resident is then diagnosed with a binary outcome, man-
ifesting depression or not proportionally to their individual
risk, pd(k).

We used this model to generate urban socioeconomic net-
works and computed their associated number of depression
cases, Y , for a range of city sizes from N =104 to 107 that
span the population range of US metropolitan areas (Fig. 1D).
We observed a simple scaling relation for the total number of
depressive cases,

Y (Ni , t)=Y0(t)Ni(t)
βeξi (t), [1]

with a sublinear exponent β=1− δ < 1. For β=1 (δ=0), cases
of depression increase proportionally to population so that there
would be no city size effect. In contrast, for β < 1 (sublinear),
a smaller proportion of the population manifests depression in
larger cities.

We express the quantitative consequences of the model based
on 100 iterations for each city to predict that the number of
depression cases follows a power law function of city size with a
scaling exponent β=0.859 (95% CI = [0.854, 0.863]) (Fig. 1D).

Fig. 1. Sublinear scaling of depression in a social network model. (A) Individuals moving over a city’s hierarchical infrastructure network experience cumu-
lative exposure to semirandom social interactions. (B) This cumulative exposure results in social networks with log skew-normal degree (k) statistics with
a mean that increases with city size, indicating more per capita social interactions in larger cities, on average. (C) Individual risk for depression is inversely
proportional to social connectivity (degree) and is superimposed on the social networks generated within cities. (D) The combination of how cities shape
social networks and how social networks shape individual depression risk results in a prediction of sublinear scaling of depression cases with increased city
size (i.e., lower depression rates in larger cities; Inset). The logarithm of population and depression incidence are mean centered for ease of comparison
with the empirical results.
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Thus, under the model’s assumptions, we expect larger cities to
show substantially lower per capita rates of depression.

To test these quantitative expectations, we asked whether
empirical measurements of depression exhibit a systematic scal-
ing relationship with city population size. We analyzed four
independent datasets, which allow for consistent assessments of
cases of depression across different urban areas in the United
States.

First, we employed estimates of the prevalence of depression
in US cities produced as a part of two annual population surveys:
the National Survey on Drug Use and Health (NSDUH) (27)
from the Substance Abuse and Mental Health Services Admin-
istration and the Behavioral Risk Factor Surveillance System
(BRFSS) (28) from the Centers of Disease Control and Pre-
vention (Materials and Methods and SI Appendix, Figs. S1 and
S3 and Tables S2–S4). The NSDUH asks respondents whether
they have experienced a major depressive episode in the past
year, as defined by the Diagnostic and Statistical Manual of Men-
tal Disorders (DSM-IV) (27). The BRFSS asks respondents if
they have ever been told that they have a depressive disorder.
Both surveys involved a social interaction between a surveyor
and the respondent, which takes place over the phone for the
BRFSS and in person for the NSDUH. The differences between
the two surveys provide a consistency test on measured cases of
depression and partially rule out the possibility that their varia-
tion with city size is idiosyncratic to particular experimental or
survey methodologies.

Second, to generalize across different indicators and to avoid
biases in reporting due to social stigma (29), we added two
additional estimates of depression prevalence based on passive
observation, which does not rely on an overt survey instru-
ment. Specifically, we explored two large geolocated Twitter
10′ datasets of individuals and their messages for depressive
symptoms in different cities. Twitter requires users to opt in to
geolocation, and as a result, only a small fraction of tweets are
geolocated (30). Importantly, this bias further distinguishes the
two Twitter datasets from the survey-based data and strengthens
any claims of generalization across the ways in which the data
were collected and the populations of people studied.

These two Twitter datasets included an existing dataset col-
lected over 1 wk in 2010 (31) and a historical dataset covering 1
mo in 2019. Similar datasets have been used to demonstrate that
happiness decreases with per capita tweets (17), to demonstrate
that counts of users scale superlinearly with city size (32), and
to assess regional variability in SWB (33), but to our knowledge,
they have not been used to directly estimate associations between
mental health disorders and city size.

To measure the prevalence of depression from this corpus, we
employed a machine learning technique to identify depressive
symptoms from users’ messages, emulating the Patient Health
Questionnaire-9 (PHQ-9) commonly used by clinicians. The
PHQ-9 consists of nine questions based on the nine criteria
for diagnosing depression in the DSM-IV. In order to emu-
late the PHQ-9 questions, we used a previously determined
lexicon of seed terms organized into nine topics to guide a
Latent Dirichlet Allocation (LDA) (34) method to determine
the degree to which each user’s messages represent these top-
ics (Materials and Methods and SI Appendix, Fig. S4 and Table
S5). This technique has been found to have an accuracy (pro-
portion of tweets correctly identified) of 68% and precision
(1 − the false discovery rate of tweets with depressive symptoms)
of 72% compared with expert assignment of tweets to PHQ-9
questions (34).

We estimated the scaling exponent β from each of these
datasets via ordinary least squares (OLS) linear regression
between the logarithm of total depression cases and the loga-
rithm of population size (Materials and Methods and SI Appendix,
Figs. S4 and S5 and Table S6). When pooling across datasets and

years, we estimated a scaling exponent of β = 0.868 (95% CI =
[0.843, 0.892]) (Fig. 2), consistent with our simulation model’s
prediction of β=0.859. Moreover, estimates of β are similar
when calculated separately for each dataset (Table 1 and SI
Appendix, Fig. S6).

While the Twitter19′ dataset suggests that this statistical rela-
tionship is consistent across cities with populations ranging from
about 40,000 to 20 million (SI Appendix, Table S1), the BRFSS
dataset only supports sublinear scaling of depression rates in
cities larger than ∼0.5 million people (Materials and Meth-
ods and SI Appendix, Fig. S1). This discrepancy may be due
to the fact that the BRFSS city-level data are only reported
for cities with at least 500 respondents in order to ensure
anonymity. We provide evidence that this cutoff artificially alters
the joint distribution of depression prevalence estimates and
city size in the BRFSS data, but importantly, we find no evi-
dence of similar nonlinear shifts in the joint distribution in
the Twitter19′ dataset (Materials and Methods and SI Appendix,
Figs. S1 and S2).

As an additional sensitivity analysis, we performed a logistic
regression to assess how conditioning on race, income, educa-
tion, and rate of population change (i.e., migration) impacted
the observed decrease in depression rates for larger cities. We
did this with individual-level survey responses for each year of
the BRFSS data. Similar to the scaling analysis above, the aver-
age odds ratio across all years for a 1-unit increase in the natural
logarithm of city population was 0.89 (maximal 95% CI = [0.87,
0.93]) (Materials and Methods and SI Appendix, Table S7). Popu-
lation change was also not significantly related to depression rate
in the NSDUH and Twitter datasets (SI Appendix, Tables S8).
Thus, we find general empirical support for the expectation that
larger cities are associated with a decreased risk for depression
even when conditioning on race, education, income, and migra-
tion. We found no consistent evidence that the rate of population
change (i.e., migration rate) was associated with depression rates
across all datasets, despite previous research associating growing
cities with increased SWB (15).

This statistical relationship between depression and city size
is consistent in larger cities across all four datasets and across

Fig. 2. Depression cases scale sublinearly with city size. City-level measures
of depression prevalence were obtained from two survey-based datasets
(NSDUH and BRFSS) and two passive observation datasets (Twitter10′ and
Twitter19′). To collapse across datasets, the natural log of population, N,
and estimated total depression cases, #D, were mean centered within each
dataset. An OLS linear regression of the pooled data resulted in an estimate
of β = 0.868, 95% CI = [0.843, 0.892], and an R2 of 0.23. (Inset) Depres-
sion rates decrease with city size: β =−0.132, 95% CI = [−0.16, -0.011]
and R2 = 0.23.
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Table 1. Estimates of the scaling exponent β for each dataset

Dataset β 95% CI R2 n

Twitter10′ 0.822 [0.671, 0.973] 0.853 24
NSDUH 0.887 [0.826, 0.949] 0.968 31
Twitter19′ 0.911 [0.868, 0.954] 0.982 36
BRFSS2011 0.881 [0.778, 0.983] 0.881 43
BRFSS2012 0.854 [0.741, 0.966] 0.865 39
BRFSS2013 0.860 [0.750, 0.970] 0.865 41
BRFSS2014 0.829 [0.737, 0.922] 0.902 38
BRFSS2015 0.818 [0.733, 0.902] 0.903 43
BRFSS2016 0.827 [0.746, 0.907] 0.913 43
BRFSS2017 0.832 [0.769, 0.896] 0.949 40

In all cases, we observe sublinear (β < 1) scaling of total depression cases
with city size. n indicates the number of cities included in each dataset.

a decade, despite the different ways in which depressive symp-
toms are measured and the different ways that the data were
collected. Importantly, these results demonstrate that depression
rates are substantially lower in larger US cities, contrary to previ-
ous expectations but precisely in line with our theoretical model
and simulations.

Discussion
Although the association between urbanization and mental
health is foundational in the social sciences and in public health,
it has remained challenging to characterize and assess quanti-
tatively. This is particularly concerning as almost every nation
worldwide continues to urbanize, with over 70% of the world’s
population expected to live in cities by 2050 (35), and depressive
disorders are already a leading global cause of disability (36) and
economic losses (37).

Based on size alone, large cities bear the brunt of the social
and economic burden of depressive disorders. Our findings sug-
gest that on a relative basis, however, smaller cities are actually
worse off. Consequently, the discrepancy between BRFSS data
and Twitter19′ data in small cities is particularly concerning.
While our analysis suggests that this discrepancy stems from the
way in which BRFSS city-level data are reported, it is important
that future work develops accurate observation instruments for
both smaller cities and finer geographic units within cities (i.e.,
neighborhoods). This will be particularly important as public
health officials start to incorporate geographic patterns of men-
tal health disorders into their allocation plans for mental health
care resources.

The convergence of recent findings from urban science with
evidence and theory from mental health studies offers a win-
dow for creating more systematic approaches to understanding
mental health in cities. In this respect, the sublinear scaling of
total depression cases with population size in larger US cities
is a completely unexpected result characterizing the sociogeo-
graphic distribution of depression. While the results presented
here speak only to larger urban areas in the United States, they
suggest that larger city environments and urbanization can, on
average, naturally provide greater social stimulation and connec-
tions that may buffer against depression. Although urban scaling
theory has been shown to generalize across cultures (21) and
human history (3, 38–40), it is critical for future work to exam-
ine whether the presented extension of urban scaling theory to
depression generalizes to smaller cities and to other countries
and cultures.

While our theoretical model only considers the quantity of
social connections, embedded in urban scaling theory is the
general implication that the net (economic and social) bene-
fit of these interactions is positive (21). Future work on the
link between social connectivity and mental health should con-
sider and explicitly model urban gradients in the quality of such

connections. Alongside quantity, the quality of social connec-
tions is a strong predictor of depression (41, 42) and SWB (41).
Although the evidence relating SWB to cities is mixed—some
studies report no relationship between city size and SWB (15),
some suggest higher SWB in larger cities (16), some suggest
lower SWB in larger cities (17), and some suggest an inverted
U (i.e., higher SWB for midsized cities) (18, 43)—the qual-
ity of social connections might hold the key to understanding
discrepancies between city-level trends in SWB and depression
rates.

In particular, while positive and negative affects are similarly
weighted in SWB measures (44), depression is frequently char-
acterized by more substantial and nuanced changes in negative
affect (45, 46). Thus, the results presented here suggest that the
greater number of social connections in larger cities on the whole
may provide a social buffer against negative affect and depres-
sion in the most vulnerable people (i.e., those with the smallest
social networks).

Conversely, increased positive affect is related to higher-
quality social connections independently of negative affect and
depressed mood (47). Thus, the alleged more callous and super-
ficial social interactions in larger cities (1, 4) may explain
decreases in positive affect and SWB but simultaneously, may
still buffer individuals from depression by decreasing nega-
tive affect (i.e., these more numerous social interactions may
impact negative and positive affects differently). Since individ-
uals with the lowest SWB are at a significant risk for clinical
depression (41, 48–50), it is important for future work to exam-
ine how the rate of low-SWB scores varies between cities of
different sizes.

We must also recognize that the numerous factors that influ-
ence depression vary enormously within cities. These variations
may influence individuals directly and also, indirectly through the
local environments in which they live and work.

For example, homophilic gradients of mobility have been
observed in neighborhoods with similar levels of socioeconomic
status (51–53), so that city inhabitants from poorer (richer) com-
munities tend to preferentially travel to similarly poor (rich)
areas. In addition, recent research suggests that neighborhoods
with higher overall socioeconomic status tend to be better inte-
grated into their surroundings, affording residents better access
to the rest of the city (51). Thus, it is crucial that future work
examines the relationship between depression rates, mobility,
and social connectivity in smaller populations, such as at the
neighborhood level.

In addition, looking within cities at these local and more fine-
grained levels is expected to reveal variations in the incidence of
depression via other social groupings (12). For example, several
studies have associated high population density in social hous-
ing in Europe and the United States with higher incidence of
depression in aging adults (19), possibly mediated by a higher
density of negative connections with neighbors, which can instill
feelings of isolation, fear, and despair. In order to search for finer
causal evidence, future work may employ a number of experi-
mental designs such as sibling comparisons or stratification by
confounding factors (54).

Examining scaling relationships of mental health outcomes
with city size is a systematic way of investigating general urban
effects on mental life, which places focus on collective influence
on mental health disorders. The perspective of cities as inter-
connected networks that shape their inhabitants lives may also
help to uncover environmental factors that influence other men-
tal health disorders and overall well-being. This includes highly
comorbid psychopathologies such as anxiety disorders and less
comorbid ones such as schizophrenia, for which increased social-
ization may lead to different outcomes. The fact that important
insights about the mechanisms of mental health disorders might
be gleaned from such a general population–level analysis, which
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ignores the intricate and often personal details of mental health,
is surprising and powerful.

Materials and Methods
Data Sources and Processing. County populations in Fig. 2 are provided by
the US Census Bureau and available online at https://www.census.gov/data/
tables/time-series/demo/popest/2010s-counties-total.html. We used delin-
eation files provided by the US Office of Budget and Management to
aggregate county-level data up to metropolitan statistical areas (MSAs).
Each MSA represents a US Census definition of a functional city in the United
States, circumscribing together a city and its suburbs, sometimes known
as an integrated labor market in economic geography. These definitions
are updated regularly and available at https://www.census.gov/programs-
surveys/metro-micro/about/delineation-files.html. The list of MSAs included
in analysis in the text (Fig. 2) is enumerated in SI Appendix, Table S1.

As the surveys from which we obtained depression prevalence estimates
are administered by different agencies (the Substance Abuse and Mental
Health Services Administration administers the NSDUH, and the Centers
for Disease Control and Prevention administers the BRFSS), collection and
reporting methods differ substantially between these two data sources. The
NSDUH is conducted in person, while the BRFSS is conducted over the phone.
In addition, the two surveys differ in the questions they ask about depres-
sive symptoms. The NSDUH asks participants whether or not they had a
period of 2 or more weeks in which they experienced depressive symptoms
in line with definitions in the DSM-IV (27). In contrast, the BRFSS asks respon-
dents if they have ever been told that they “have a depressive disorder
(including depression, major depression, dysthymia, or minor depression).”
(28). In addition to these differences in questionnaire content and meth-
ods, the two data sources also differ in how they report data. The NSDUH
reports age, ethnicity, and geography-adjusted prevalence estimates in 33
MSAs (27). In contrast, the BRFSS reports age, gender, and socioeconomically
adjusted prevalence estimates for any MSA with at least 500 respondents
(28), and consequently, the cities that are included in reports vary from
year to year.

The 2010 NSDUH estimates of the rate of major depressive episodes
used in Fig. 2 were obtained from Table 38 of the Substance and
Mental Health Services Administration 2005 to 2010 NSDUH. These data
are available online at https://www.samhsa.gov/data/sites/default/files/
NSDUHMetroBriefReports/NSDUHMetroBriefReports/NSDUH Metro Tables.
pdf. We multiplied estimated prevalence by 2010 estimated population to
determine the estimate of total depression cases within each MSA.

The 2011 to 2017 BRFSS city estimates of the prevalence of major
depression used in Fig. 2 are available online at https://www.cdc.gov/brfss/
smart/Smart data.htm. As with the NSDUH data, we multiplied estimated
prevalence by that year’s estimated population to estimate of total
depression cases within each MSA.

One point of concern was that the cutoff of 500 respondents per city
in the BRFSS data might artificially alter the joint distribution of preva-
lence and city size in a way that biases the estimate of β. One possibility
is that larger cities are simply more likely to record enough responses to
be included. However, since the BRFFS data include cities with populations
as small as 20,285, whatever bias this 500-respondent cutoff may introduce
likely has a more complex origin. In order to address this without knowing
the source of potential biases in city inclusion, we employed nonparamet-
ric change point detection based on the minimum covariate discriminant
(MCD) (55) in order to find the city size at which the joint distribution of city
size and depression prevalence was different on either side of the change
point. This was applied to the BRFSS data annually; results are consistent
across years with the mean change point of 692,557 people (SD = 268,004
people).

Specifically, we followed a procedure similar to that in ref. 56. For each
year of BRFSS data, we first ordered the data by population and then
applied a python implementation of the MCD algorithm (57) with a sliding
window. This resulted in a robust to outliers estimate of the mean within
the window and the 2 × 2 robust covariance matrix between population
and depression prevalence within the window. These two quantities allow
for the estimation of the Mahalanobis distance between the robust mean
and the data from the city that has the next smallest population to the small-
est city included in the window (the left-out city). These distances follow a
χ2 distribution with degrees of freedom equal to the size of the window.
Consequently, we marked the left-out city as a potential change point if the
Mahalanobis distance was greater than the 97.5th percentile of the rele-
vant χ2 distribution. Finally, we calculated a moving average with window
size 5 of marked change points. We considered a specific city size to be a
change point if the moving average of marked change points was greater

than 0.5. This was repeated for MCD window sizes from 5 to 25 data points
in increments of two. Histograms of the detected change points over all win-
dow sizes are shown in SI Appendix, Fig. S1. When applied to the Twitter19′

dataset, change points are observed primarily at the ends of the population
range (SI Appendix, Fig. S2). This is suggestive of finite edge effects rather
than a systematic change in the joint distribution of depression rates and
city size as in seen in the BRFSS data.

Next, we used a k-means clustering implementation in python (57) to split
the detected change points into two separate clusters based on the obser-
vation that the histograms of change points over all bin sizes for most years
are roughly bimodally distributed. We used the two cluster centers as the
final change points for each year of BRFSS data, resulting in a partition of
the data into three sets. Scaling estimates for the largest cities are reported
in the text, Fig. 2, and Table 1. When pooling all BRFSS data across all cities
and years, we still find evidence that larger cities have lower depression
rates than smaller cities β= 0.926 (95% CI = [0.903, 0.950]). Results are simi-
lar when β is estimated separately for each year of BRFSS data (SI Appendix,
Table S4). When pooling data from the other two partitions, which con-
tain smaller cities, we found no evidence that depression rates scale sub-
or superlinearly with population β= 0.996 (95% CI = [0.956, 1.035]) (SI
Appendix, Fig. S3). Results were similar when estimating β for each year
separately (SI Appendix, Table S2). This lack of a city size effect for smaller
cities in the BRFSS data may indicate that social network determinants of
depression are overshadowed by other risk factor in smaller cities but may
also be specific to biases introduced by the way in which the data were
collected and reported.

We further estimated the sensitivity of our β estimates among larger
cities to variation in the change point. For each year of BRFSS data, we var-
ied the change point 100 times according to a normal distribution with a
mean of the change point used for that year in the main text and a vari-
ance equal to the variance in change points across years. We found that the
estimates of β in larger cities are robust to these variations in the choice of
change point (SI Appendix, Table S3).

The geolocated Twitter10′ dataset used in Fig. 2 and Table 1 is avail-
able online at http://www.cs.cmu.edu/∼ark/GeoText/. This dataset included
377,616 tweets from 9,475 users collected over a 1-wk period in March of
2010 (31). Latitude and longitude coordinates for each tweet were con-
verted to a county-level geographic identifier using the US Census Geocoder
application programming interface (API) provided by the US Census Bureau
available at https://github.com/fitnr/censusgeocode. If there was more than
one coordinate per user, we used the mode, and in the case of a tie, we
used the coordinate that appeared first in time. We then used delineation
files provided by the US Office of Budget and Management to roll up
county-level data to MSAs.

The Twitter19′ dataset used in Fig. 2 was collected via Twit-
ter’s academic research full search API (https://developer.twitter.com/
en/solutions/academic-research) and was deemed not human subjects
research by the University of Chicago Institutional Review Board (IRB20-
2049) due to the fact that all data are publicly available. Tweets that had
available location tags (longitude and latitude) within US cities between
1 June and 1 July 2019 were collected. This included data from 572,208
users and 15,076,651 tweets. The query parameters for retrieving tweets
are available online at https://github.com/enlberman/depression scaling. We
note that while Twitter’s opt-in policy for geolocation data changed in 2015
to require explicit consent to share precise global positioning system coor-
dinates (30), we rely on provided coarse location data included with all
geolocated tweets.

We processed tweets following ref. 34 using standard text preprocess-
ing (for example, deleting stop words) and processing steps specific to
the Twitter platform (for example, deleting “#” in the hashtags). Then,
we used a previously determined lexicon of seed terms related to depres-
sion symptoms organized into nine topics based on the PHQ-9 to guide
an LDA model (34). LDA allows for the discovery of underlying topics
within collections of text data and has been utilized previously with short,
semistructured text sources (e.g., refs. 58 and 59). This enabled us to find
users who had topic cluster(s) related to nine PHQ-9 topics in their tweets
over 1 wk.

One point of concern was that individuals who have depressive symptoms
may tweet differently from those who do not have them. Specifically, we
worried that individuals with depressive symptoms would tweet less, lead-
ing to less reliable estimates from these individuals. This was the case; in the
2010 Twitter dataset, individuals with depressive symptoms tweeted 57.7
times on average, while individuals without depressive symptoms tweeted
37.6 times on average (t statistic = 25.7, P = 7e-141). In order to control for
this, we performed a logistic regression to predict the presence of depressive
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language in users tweets from their number of tweets over the 1-wk collec-
tion period. We repeated this procedure excluding users who had fewer
than a specified number of tweets for cutoffs from 0 to 110 tweets. As
demonstrated in SI Appendix, Fig. S4, the logistic regression model achieves
significance for the 2010 Twitter dataset when individuals with fewer than
92 tweets are included. This indicates that people with depressive symp-
toms tend to tweet less but that among individuals who tweeted at least 92
times over the collection period, a logistic regression model cannot differen-
tiate between individuals with and without depressive symptoms based on
their number of tweets. Consequently, we excluded individuals with fewer
than 92 tweets and then estimated depression prevalence as the propor-
tion of users in each city whose tweets contained a nonzero signal for
any of the PHQ-9 topics. In the Twitter19′ dataset, users with depressive
symptoms tweeted 45.2 times on average, and those without depressive
symptoms tweeted 41.6 times on average (t statistic = 9.52, P = 2e-21).
Since the quantities of text were similar in both groups (compared with
the 20 tweet difference in the 2010 Twitter dataset), we used a cutoff of
15 tweets to ensure that the LDA algorithm had sufficient input. In addi-
tion, we excluded cities in which estimated depression rates were unrealistic
at 0 or 100%.

In order to test the sensitivity of the results to the minimum tweet
threshold, we repeated the scaling analysis on the Twitter10′ dataset with
minimum tweet count cutoffs from 82 to 101 (SI Appendix, Table S5) and
found that estimates of β were robust to these changes in exclusion criteria.

Estimating the Scaling Exponent β. We performed OLS linear regression in
order to calculate the scaling exponent β for depression cases. We verified
that the residuals of the models in Table 1 are approximately normally dis-
tributed with both quantile-quantile plots of the residuals (SI Appendix, Fig.
S5) and the Shapiro–Wilk test of normality (60) (SI Appendix, Table S6). We
also verified that the residuals are not correlated with city size (SI Appendix,
Fig. S6) (Spearman r minimum P value = 0.44).

Conditioning on Race, Education, Income, and Population Change. We addi-
tionally assessed whether city size was associated with a decreased risk of
depression after conditioning on race, education, income, and population
change. To do so, we ran logistic regressions with the R package lme4
(61) on each year of the BRFSS data using the individual participant-level
survey responses. We did this only for the 41 cities considered in the pri-
mary analysis. We used the BRFSS-provided categories for income, race, and
education. Consequently, the income variable had six levels with a base-
line of not reported or missing, followed by less than $15,000; $15,000 to
$25,000; $25,000 to $35,000; $35,000 to $55,000; and greater than $50,000.
The education variable had five levels with a baseline of not reported fol-
lowed by no high school, graduated high school, attended college, and
graduated college. The race variable had four levels with a baseline of
White followed by Black, Asian, and other/multiracial. We additionally
included the natural logarithm of the population of each respondent’s
city as a dependent variable. The independent variable indicated whether
each respondent had ever been told they have depression. The model is
defined as

logit{yi = 1}= β0 + β1log(population) + β2incomei + β3educationi

+ β4racei + β5∆population/population. [2]

Results are summarized in SI Appendix, Table S7, which was created with
the R stargazer package (62). The maximal 95% CI for the odds ratio of log

city population was found by taking the union of 95% CIs across all years of
data.

Generative Network Model for Depression in Cities. The starting point for
the simulations of depression cases was the log skew-normal degree dis-
tribution, which has been shown to match the degree distributions of cell
phone–based social networks in cities (22) and theoretically, is the result
of cumulative exposures to semirandom interactions taking place through-
out cities’ infrastructure networks. The log skew-normal distribution has the
density function

p(ln(k)) =
2

ω
φ(

ln(k)− ζ
ω

)Φ(α(
ln(k)− ζ

ω
)), [3]

where ζ is the location parameter, α is the shape parameter, ω is the scale
parameter, φ is the normal distribution probability density function, and Φ is
the normal distribution cumulative density function. These parameters can
be transformed into the more familiar mean (µ), variance (σ2), and skewness
(γ1) via (63)

µ= ζ+ωδ

√
2

π
, where δ=

α√
1 +α2

[4]

σ
2

=ω
2

(
1−

2δ2

π

)
, [5]

γ1 =
4−π

2

(δ
√

2/π)3

(1− 2δ2/π)3/2
. [6]

We started with values of σ= 0.87, γ1 = 0.2, and µ= 1.97 in line with a city
of size N = 10, 000 (22). We then let the mean of this distribution grow with
population size according to

µ(N) = 1.97 + δ · ln
(

N

10, 000

)
, where δ=

1

6
' 0.167 [7]

so that 〈k〉∼Nδ . For each simulated city with size N, we sampled uni-
formly from it on a log scale from 104 to 107. We then sampled from the
degree distribution N times to obtain a list of the social network degrees of
all N simulated city inhabitants. From this list, we randomly assigned each
simulated individual to be diagnosed with depression (or not) with a proba-
bility inversely proportional to their degree (probability of depression∼1/k).
Total depression cases in each simulated city were calculated as the sum of
depressed individuals.

Data Availability. City-level depression rates for the Twitter19′ dataset have
been deposited in Open Science Framework (64). Under our data use agree-
ment, the Twitter19′ dataset can only be shared after aggregating up from
individual user data. BRFSS data are available publicly online (28). NSDUH
data are publicly available online (27). The Twitter10′ dataset is publicly
available online (31).
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ing for confounding in observational studies. Annu. Rev. Clin. Psychol. 16, 25–48
(2020).

55. M. Hubert, M. Debruyne, Minimum covariance determinant. Wiley Interdiscip. Rev.
Comput. Stat. 2, 36–43 (2010).

56. J. Cabrieto, F. Tuerlinckx, P. Kuppens, M. Grassmann, E. Ceulemans, Detecting correla-
tion changes in multivariate time series: A comparison of four non-parametric change
point detection methods. Behav. Res. Methods 49, 988–1005 (2017).

57. F. Pedregosa et al., Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830 (2011).

58. L. Hong, B. D. Davison, “Empirical study of topic modeling in Twitter” in Proceed-
ings of the First Workshop on Social Media Analytics (Association for Computing
Machinery, New York, NY, 2010), pp. 80–88.

59. K. E. Schertz et al., A thought in the park: The influence of naturalness and low-level
visual features on expressed thoughts. Cognition 174, 82–93 (2018).

60. N. Mohd Razali, Y. B. Wah, Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov,
Lilliefors and Anderson-Darling tests. J. Statistical Modeling Anal. 2, 21–33 (2011).
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